On the Role of Particle and Radial Basis Functions in a Finite Element Level Set Method for Bubble Dynamics
نویسنده
چکیده
The aim of this presentation is to highlight the role that Particle-based simulations and Radial Basis Functions (RBFs) have played in the development of a computationally efficient, level-set, Finite Element method for the simulation of Newtonian and non-Newtonian interface flows [1]. First, we introduce the mathematical formulation and the interface-capturing technique used in the simulation of multiphase flows, underscoring the influence of marker particles on the enhanced definition of the interface. Then, we explore the effect of adding polymer particles to the domain to perform Brownian Dynamics Simulations of polymer flows [2]. Finally, we leverage RBFs to reconstruct, in an almost free-independent way the polymer stress tensor retrieved from the polymer particles [3]. Numerical simulations of pure advection flows and bubble dynamics simulations of complex flows on two-dimensional configurations emphasize the improvements offered by this hybrid, Finite Element / RBF / Particle-based method.
منابع مشابه
Time-Discontinuous Finite Element Analysis of Two-Dimensional Elastodynamic Problems using Complex Fourier Shape Functions
This paper reformulates a time-discontinuous finite element method (TD-FEM) based on a new class of shape functions, called complex Fourier hereafter, for solving two-dimensional elastodynamic problems. These shape functions, which are derived from their corresponding radial basis functions, have some advantages such as the satisfaction of exponential and trigonometric function fields in comple...
متن کاملElasto-plastic analysis of discontinuous medium using linearly conforming radial point interpolation method
In this paper, the linearly conforming enriched radial basis point interpolation method is implemented for the elasto-plastic analysis of discontinuous medium. The linear conformability of the method is satisfied by the application of stabilized nodal integration and the enrichment of radial basis functions is achieved by the addition of linear polynomial terms. To implement the method for the ...
متن کاملCOMPOSITION OF ISOGEOMETRIC ANALYSIS WITH LEVEL SET METHOD FOR STRUCTURAL TOPOLOGY OPTIMIZATION
In the present paper, an approach is proposed for structural topology optimization based on combination of Radial Basis Function (RBF) Level Set Method (LSM) with Isogeometric Analysis (IGA). The corresponding combined algorithm is detailed. First, in this approach, the discrete problem is formulated in Isogeometric Analysis framework. The objective function based on compliance of particular lo...
متن کاملTOPOLOGY OPTIMIZATION OF PLANE STRUCTURES USING BINARY LEVEL SET METHOD AND ISOGEOMETRIC ANALYSIS
This paper presents the topology optimization of plane structures using a binary level set (BLS) approach and isogeometric analysis (IGA). In the standard level set method, the domain boundary is descripted as an isocountour of a scalar function of a higher dimensionality. The evolution of this boundary is governed by Hamilton–Jacobi equation. In the BLS method, the interfaces of subdomai...
متن کاملSolution of Harmonic Problems with Weak Singularities Using Equilibrated Basis Functions in Finite Element Method
In this paper, Equilibrated Singular Basis Functions (EqSBFs) are implemented in the framework of the Finite Element Method (FEM), which can approximately satisfy the harmonic PDE in homogeneous and heterogeneous media. EqSBFs are able to automatically reproduce the terms consistent with the singularity order in the vicinity of the singular point. The newly made bases are used as the compliment...
متن کامل